31 resultados para mRNA

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium/proton exchangers (NHE) are transmembrane proteins that facilitate the exchange of a Na+ ion for a H+ ion across cellular membranes. The NHE are present in the gills of fishes and are believed to function in acid-base regulation by driving the extrusion of protons across the branchial epithelium in exchange for Na+ in the water. In this study, we have used reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the presence of a branchial NHE in the gills of the Atlantic hagfish, Myxine glutinosa. The subsequent partial cDNA sequence shares homology with other vertebrate and invertebrate NHE isoforms. In addition, using semi-quantitative, multiplex RT-PCR we demonstrate that mRNA expression of hagfish gill NHE is upregulated following an induced metabolic acidosis. Expression was increased to 4.4 times basal levels at 2-h post-infusion and had decreased to 1.6 times basal by 6 h. Expression had returned to basal levels by 24-h post-infusion. The inference from this study is that a gill NHE which is potentially important in acid-base regulation has been present in the vertebrate lineage since before the divergence of the hagfishes from the main vertebrate line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylin and uroguanylin are peptides that activate guanylyl cyclase C (GC-C) receptors in the intestine and kidney, which causes an increase in the excretion of salt and water. The Spinifex hopping mouse, Notomys alexis, is a desert rodent that can survive for extended periods without free access to water and it was hypothesised that to conserve water, the expression of guanylin, uroguanylin, and GC-C would be down-regulated to reduce the excretion of water in urine and faeces. Accordingly, this study examined the expression of guanylin, uroguanylin, and GC-C mRNA in Notomys under normal (access to water) and water-deprived conditions. Initially, guanylin and uroguanylin cDNAs encoding the full open reading frame were cloned and sequenced. A PCR analysis showed guanylin and uroguanylin mRNA expression in the small intestine, caecum, proximal and distal colon, heart, and kidney. In addition, a partial GC-C cDNA was obtained and GC-C mRNA expression was demonstrated in the proximal and distal colon, but not the kidney. Subsequently, a semi-quantitative PCR method showed that water deprivation in Notomys caused a significant increase in guanylin and uroguanylin mRNA expression in the distal colon, and in guanylin and GC-C mRNA expression in the proximal colon. No significant difference in guanylin and uroguanylin mRNA expression was observed in the kidney. The results of this study indicate that there is, in fact, an up-regulation of the colonic guanylin system in Notomys after 7 days of water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six untrained, male subjects (23 ± 1 years old, 84 ± 5 kg, VO2peak= 3.7 ± 0.8 l min–1) exercised for 60 min at 75 ± 1%VO2peak on 7 consecutive days.  Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by ~20% and muscle glycogen concentration by ~40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those  measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 ± 1.5 versus 3.4 ± 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 ± 3.0 versus 3.4 ± 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a method for obtaining viable buccal cells from mouthwash samples for use as a source of mRNA and protein. Immunofluorescent analysis showed that most cells were derived from nonkeratinized parabasal epithelia, with a minor proportion of proliferative cells. Gene expression was detected in buccal cells using reverse transcription PCR, Western blot analysis, and immunofluorescence. Using a keratinocyte-specific medium, buccal cells could be cultured on Matrigel™-coated permeable filters for up to 2 weeks while maintaining the expression of some epithelial-specific markers, including cytokeratin 13, cytokeratin 10, transferrin receptor, and β-integrin. The basal marker cytokeratin 14 and Ki67, an indicator of cellular proliferation, were detected in a few cells. We show that buccal cells can be obtained from a noninvasive procedure for use as a source of material for biochemical analyses. A population of the buccal cells can be maintained in culture for up to 2 weeks using keratinocyte-specific medium in combination with extracellular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. Methods: Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump α1, α2, α3, β1, β2 and β3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). Results: ETM demonstrated lower α1, α3, β2 and β3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P < 0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P < 0.03). RAM demonstrated a 230% and 364% higher α3 and b3 mRNA expression than RAF, respectively (P < 0.05), but no significant sex differences were found for α1, α2, β1 or β2 mRNA, [3H]-ouabain binding  or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r = 0.31, P < 0.02) and between incremental exercise V O2(peak) and both   [3H]-ouabain binding (r = 0.33, P < 0.01) and 3-O-MFPase activity (r = 0.28, P < 0.03). Conclusions: Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natriuretic peptide receptors mediate the physiological response of  natriuretic peptide hormones. One of the natriuretic peptide receptor types is the particulate guanylyl cyclase receptors, of which there are two identified: NPR-A and NPR-B. In fishes, these have been sequenced and characterized in eels, medaka, and dogfish shark (NPR-B only). The euryhaline rainbow trout provides an opportunity to further pursue examination of the system in teleosts. In this study, partial rainbow trout NPR-A-like and NPR-B-like mRNA sequences were identified via PCR and cloning. The sequence information was used in real-time PCR to examine mRNA expression in a variety of tissues of freshwater rainbow trout and rainbow trout acclimated to 35 parts per thousand seawater for a period of 10 days. In the excretory kidney and posterior intestine, real-time PCR analysis showed greater expression of NPR-B in freshwater fish than in those adapted to seawater; otherwise, there was no difference in the expression of the individual receptors in fresh water or seawater. In general, the expression of the NPR-A and NPR-B type receptors was quite low. These findings indicate that NPR-A and NPR-B mRNA expression is minimally altered under the experimental regime used in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examines the relationship between the magnitude of the relative slow component (SC) of pulmonary oxygen uptake VO[sub 2], citrate synthase activity, UCP2 and UCP3 mRNA levels and muscle fiber composition in both endurance-trained and recreationally active subjects. Magnitude of the relative SC of the Tr group; Indicators of aerobic fitness; High negative correlations between the magnitude of the relative SC and citrate synthase activity and VO[sub 2] peak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of expression of, and consequently also the acute exercise effects on, Na+,K+-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na+,K+-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±S.E.M.) immediately increased 3 and ß2 mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst 1 and 2 mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for ß1 and ß3 mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for 1, 2, 3, ß1, ß2 and ß3 isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the 1–3 and ß1–ß3 isoforms. Thus, human skeletal muscle expresses each of the Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na+,K+-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na+,K+-ATPase up-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated whether depressed muscle Na+-K+-ATPase activity with exercise reflected a loss of Na+-K+-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na+-K+-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at ~40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na+-K+-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na+-K+-ATPase content via [3H]ouabain binding sites, and Na+-K+-ATPase α1-, α2-, α3-, ß1-, ß2- and ß3-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [3H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated α1-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Δ3-O-MFPaserest-fatigue) (r = –0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) {alpha}1-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Δ3-O-MFPaserest-fatigue (r = –0.56, P = 0.08). Exercise elevated α2-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Δ3-O-MFPaserest-fatigue (r = –0.60, P = 0.05). The average postexercise α2-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Δ3-O-MFPaserest-fatigue (r = –0.68, P < 0.05). Nonsignificant correlations were found between %Δ3-O-MFPaserest-fatigue and other isoforms. Thus acute exercise transiently decreased Na+-K+-ATPase activity, which was correlated with increased Na+-K+-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na+-K+-ATPase activity with exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated effects of prolonged submaximal exercise on Na+-K+-ATPase mRNA and protein expression, maximal activity, and content in human skeletal muscle. We also investigated the effects on mRNA expression of the transcription initiator gene, RNA polymerase II (RNAP II), and key genes involved in protein translation, eukaryotic initiation factor-4E (eIF-4E) and 4E-binding protein 1 (4E-BP1). Eleven subjects (6 men, 5 women) cycled at 75.5% (SD 4.8%) peak O2 uptake and continued until fatigue. A vastus lateralis muscle biopsy was taken at rest, fatigue, and 3 and 24 h postexercise. We analyzed muscle for Na+-K+-ATPase α1, α2, α3, β1, β2, and β3, as well for RNAP II, eIF-4E, and 4E-BP1 mRNA expression by real-time RT-PCR and Na+-K+-ATPase isoform protein abundance using immunoblotting. Muscle homogenate maximal Na+-K+-ATPase activity was determined by 3-O-methylfluorescein phosphatase activity and Na+-K+-ATPase content by [3H]ouabain binding. Cycling to fatigue [54.5 (SD 20.6) min] immediately increased {alpha}3 (P = 0.044) and {beta}2 mRNA (P = 0.042) by 2.2- and 1.9-fold, respectively, whereas {alpha}1 mRNA was elevated by 2.0-fold at 24 h postexercise (P = 0.036). A significant time main effect was found for α3 protein abundance (P = 0.046). Exercise transiently depressed maximal Na+-K+-ATPase activity (P = 0.004), but Na+-K+-ATPase content was unaltered throughout recovery. Exercise immediately increased RNAP II mRNA by 2.6-fold (P = 0.011) but had no effect on eIF-4E and 4E-BP1 mRNA. Thus a single bout of prolonged submaximal exercise induced isoform-specific Na+-K+-ATPase responses, increasing α1, α3, and β2 mRNA but only α3 protein expression. Exercise also increased mRNA expression of RNAP II, a gene initiating transcription, but not of eIF-4E and 4E-BP1, key genes initiating protein translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 x 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor- coactivator-1 (ET 8.5-fold, ST 10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET 26-fold, ST 39-fold), vascular endothelial growth factor (VEGF; ET 4.5-fold, ST 4-fold), and muscle atrophy F-box protein (MAFbx) (ET 2-fold, ST 0.4-fold) mRNA increased in both groups, whereas MyoD (3-fold), myogenin (0.9-fold), and myostatin (2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (7-fold, P < 0.01) and MyoD (0.7-fold) increased, whereas MAFbx (0.7-fold) and myostatin (0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stimulatory effect of vasomodulatory natriuretic peptide hormones on macrophages and peripheral blood leucocytes in mammals is well-established. However, the relationship in lower vertebrates has not been characterised. Expression of atrial natriuretic peptide, ventricular natriuretic peptide and C-type natriuretic peptide-1, and the guanylyl cyclase-linked (GC) natriuretic peptide receptor-A and -B-type receptors (NPR-A and NPR-B, respectively) was determined by PCR from the mRNA of rainbow trout head kidney leucocytes yielding gene fragments with 100% homology to the same respective natriuretic peptide and NPR-A and -B sequences obtained from other rainbow trout tissues. A mixed population of isolated rainbow trout head kidney leucocytes was stimulated in vitro with trout atrial natriuretic peptide (specific NPR-A agonist) and trout C-type natriuretic peptide (NPR-A and -B agonist) as well as the cGMP agonist 8-bromo-cGMP or the GC inhibitor 8-bromo-phenyl-eutheno-cGMP. Respiratory burst was stimulated by trout atrial natriuretic peptide, trout C-type natriuretic peptide-1 and 8-bromo-cGMP in a dose dependant manner with the highest activity as a result of stimulation with trout C-type natriuretic peptide-1 in excess of that achieved by phorbol myristate acetate (PMA). Equimolar concentrations of the inhibitor, inhibited the respiratory burst caused by the natriuretic peptides and 8-bromo-cGMP. The natriuretic peptide receptors on rainbow trout head kidney leucocytes appear to have a stimulatory function with regard to respiratory burst that is activated through a cGMP second messenger pathway and the natriuretic peptides expressed in the head kidney leucocytes may well act in a paracrine/autocrine manner.